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ScienceDirect
Neurons transcribe different genes in response to

different extracellular stimuli, and these genes regulate

neuronal plasticity. Thus, understanding how different stimuli

regulate different stimulus-dependent gene modules would

deepen our understanding of plasticity. To systematically

dissect the coupling between stimulation and transcription,

we propose creating a ‘stimulation–transcription coupling

map’ that describes the transcription response to each

possible extracellular stimulus. While we are currently far

from having a complete map, recent genomic experiments

have begun to facilitate its creation. Here, we describe the

current state of the stimulation–transcription coupling map as

well as the transcriptional regulation that enables this

coupling.
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Introduction
Neurons transcribe different subsets of neuronal-activity-

regulated genes (ARGs) in response to different extracel-

lular stimuli [1,2,3��,4–9,10��,11–14,15��]. Thus, a vast

number of different stimuli could each be coupled to a

unique transcription program. We have known since the

1980s that the nature of neuronal stimulation, including

its intensity and temporal pattern, determines the mag-

nitude of induction of a few individual ARGs, such as Fos
and Egr1 [1,2,3��,4–7]. More recently, genomic studies of

hundreds of ARGs have begun to expand such findings to

reveal how different stimuli are coupled to the ARG

program as a whole [8,9,10��,11–14,15��].

Understanding this coupling between stimulation

and transcription could be a new and powerful

route toward understanding how ARGs orchestrate neu-

ronal-activity-dependent plasticity. ARG transcription
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contributes not only to neuron-wide plasticity like

homeostatic synaptic scaling [16], but also to synapse-

specific plasticity (e.g. long-term potentiation [17], which

may occur via synaptic tagging [18]). Thus far, this ARG-

dependent plasticity has primarily been investigated

using single-gene knockouts and total blockades of tran-

scription [16,17]. For example, knockout mice have

revealed that Arc and Homer1a are important for home-

ostatically tuning synaptic strength [19,20], that Npas4
and Bdnf regulate inhibition onto excitatory neurons

[21–23], that Nptx2 promotes excitation onto inhibitory

neurons [24], and that Igf1 cell-autonomously regulates

inhibitory inputs onto vasoactive-intestinal-peptide-

expressing interneurons [80]. However, hundreds of

ARGs are induced in response to stimulation, making

it laborious to use single-gene manipulation to link each

gene to a specific type of plasticity. Because different

stimuli induce different types of plasticity [25], one

alternative to single-gene manipulation is to test the

functions of ARG modules defined by the stimuli that

induce them. This approach will require identifying

stimulus-specific modules and manipulating module-spe-

cific regulatory mechanisms. Thus, to enable this

approach and reveal new roles for ARG modules in

plasticity, it will be important to understand how each

type of stimulation is coupled to an ARG expression

program as well as the transcriptional regulation that

establishes such coupling.

To systematically assess stimulation–transcription cou-

pling, we propose creating a stimulation–transcription

coupling map (Figure 1). This map will describe

how stimulation space (which encompasses all possible

variation in stimulation) maps onto transcription

space (which encompasses all possible ARG expression

programs). Specifically, stimulation space includes

the neurotransmitter or neurotrophin stimulating the

neuron, the valence of this stimulus (excitatory or

inhibitory), and its temporal or spatial pattern. Tran-

scription space includes which genes are regulated by

stimulation as well as the magnitude and kinetics of

their expression. While we are far from a complete

stimulation–transcription coupling map, genomic analy-

sis has dramatically improved our ability to draw the

coupling map by enabling assessment of all of transcrip-

tion space in a single experiment [8,9,10��,11–14,15��].
These genomic experiments have begun to reveal

principles of stimulation–transcription that enable

prediction of which genes modules will be induced

by which stimuli. Here, we will summarize these

principles and the transcriptional regulation that estab-

lishes them.
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Figure 1
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The neuronal stimulation–transcription coupling map.

We propose creating a stimulation–transcription coupling map that would link stimulation space (all possible different stimuli) to transcription

space (all possible transcription programs). Here, we show an example of three theoretical couplings between stimulation space and transcription

space, depicted on a simplified three-dimensional stimulation space defined by the spatial pattern (x) molecular identity (y), and temporal pattern

(z) of the stimulus.
Principles of stimulation–transcription
coupling
Early studies of a few individual genes revealed the first

principle of the coupling map: increased neuronal activa-

tion results in increased transcription (Figure 2b). In

cultured neurons, transcription of the ARG Fos increases

with increasing frequency of electrical stimulation [3��],
longer durations of membrane depolarization [7], and

greater concentrations of nicotine [1]. The magnitude

of Fos transcription also depends on the bursting pattern

of electrical stimulation: it is greater in neurons stimu-

lated with short bursts and short inter-burst intervals

compared to long bursts with long inter-burst intervals,

even when both patterns have an equal number of total

spikes [3��,6]. In addition to an increase in the magnitude

of transcriptional induction, the number of genes induced

also increases with increasing durations of electrical stim-

ulation [4]. Thus, pre-genomic studies revealed that the

frequency, intensity, and duration of stimulation, as well
Current Opinion in Neurobiology 2019, 59:87–94 
as its temporal organization, determines which ARGs are

transcribed and the magnitude of their transcription.

Genome-wide analysis has confirmed these principles

and revealed new ones. First, neuronal excitation and

inhibition regulate partially, but not entirely, reciprocal

gene programs [15��,26,27] (Figure 2a). Inhibition might

be expected to induce an entirely reciprocal program to

excitation, where all genes upregulated (or downregu-

lated) by excitation are downregulated (or upregulated)

by inhibition. Instead, the inhibition and excitation gene

programs appear to be only partially reciprocal: In cul-

tured neurons, �45% of the genes differentially regulated

in response to inhibition via sodium channel blockade are

reciprocally regulated in response to excitation via syn-

aptic stimulation [15��,27]. These same reciprocally reg-

ulated genes make up only 7–32% of the excitation-

regulated gene program (because excitation regulates

more genes than inhibition) [15��,26,27]. This leaves a
www.sciencedirect.com
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Figure 2

(a)

(d) (e)

(b) (c)
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Principles of stimulation–transcription and its transcriptional regulation.

(a) Neuronal excitation and inhibition regulate different, partly reciprocal gene programs, with excitation regulating more genes than inhibition.

(b) Neurons stimulated at higher frequencies transcribe ARGs at higher levels. (c) Neurons stimulated for brief durations selectively transcribe a

rapid gene module, whereas neurons stimulated for longer durations also transcribe a delayed gene module. (d) Stimulation of synaptic NMDA

receptors induces transcription of synaptic plasticity and pro-survival genes, whereas stimulation of extrasynaptic NMDA receptors induces

transcription of cell-death genes. (e) Different sources of depolarization engage different transcription factor complexes.

www.sciencedirect.com Current Opinion in Neurobiology 2019, 59:87–94
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substantial fraction of genes that appear to be uniquely,

rather than reciprocally, regulated by either inhibition or

excitation. These uniquely regulated genes may be

important for the plasticities that occur specifically in

response to inhibition (e.g. homeostatic synaptic

strengthening) or excitation (e.g. homeostatic synaptic

weakening) [28]. For example, a gene upregulated by

elevations in activity, Homer1a, is required for homeo-

static synaptic weakening [20], whereas a gene upregu-

lated by reductions in activity, Nptx1, is required for

homeostatic synaptic strengthening [15��]. In contrast,

reciprocal regulation of a single gene has yet to be

functionally implicated in opposite homeostatic

plasticities.

Genome-wide experiments have also revealed that neu-

rons stimulated by excitatory neurotransmitters, neuro-

trophins, or neuromodulators transcribe overlapping gene

programs. Excitatory neurotransmitters induce transcrip-

tion primarily via membrane depolarization, whereas

neuromodulators and neurotrophins mainly act through

metabotropic or tyrosine kinase receptors [29]. Thus,

these distinct classes of stimuli might be expected to

regulate widely different gene programs. Instead, using

separately published gene lists from cultured cortical

neurons, we calculate that 43% (16/37) of genes induced

in response to the neurotrophin BDNF [30] are also

induced in response to membrane depolarization [10��].
Similarly, 27% (30/111) of genes induced in cultured

cortical neurons by synaptic glutamate stimulation are

also induced by stimulation with forskolin, a proxy for

neuromodulator stimulation [31]. Thus, many different

non-inhibitory stimuli likely regulate stimulus-specific

gene modules drawn from a common set of ARGs.

In addition, different temporal patterns of stimulation are

coupled to different transcription programs, specifically to

different kinetically defined gene modules [9,10��]. In

both cultured cortical neurons and the cortex in vivo, short

durations of neuronal activity selectively induce a rapidly

induced gene module (‘rapid genes’) that includes Fos
and Arc, whereas longer durations of activity also induce a

slowly induced gene module (‘delayed genes’) that

includes Bdnf and Nptx2 [10��] (Figure 2c). Similar kinet-

ically defined modules may also be differentially regu-

lated in cultured dorsal-root ganglion neurons in response

to different bursting patterns. 71% of genes induced by

electrical stimulation with long bursts and long inter-burst

intervals are induced rapidly, whereas only 4.5% of genes

induced by short bursts and short inter-burst intervals are

induced rapidly [9], suggesting that long bursts may

primarily induce ‘rapid genes’ and short bursts, ‘delayed

genes’. Kinetically defined rapid and delayed gene mod-

ules exist in many inducible systems: rapid primary

response genes (PRGs) start to be transcribed within five

minutes following stimulation, whereas delayed PRGs

and secondary response genes are induced in tens of
Current Opinion in Neurobiology 2019, 59:87–94 
minutes to hours [32]. Therefore, the neuron makes

use of the multi-wave kinetic structure of the ARG

program to induce different genes in response to different

temporal patterns of stimulation.

Finally, different spatial patterns of stimulation are cou-

pled to different gene expression programs (Figure 2d).

Pharmacological separation of synaptic and cell-body

NMDA-receptor stimulation in cultured neurons

revealed that stimulation of synaptic NMDA receptors

induces transcription of far more genes than stimulation

of cell-body receptors [14]. The genes uniquely induced

by synaptic NMDA receptor stimulation are pro-survival

genes, whereas those uniquely induced by somatic

NMDA receptor stimulation are cell-death genes, reveal-

ing a potential mechanism for glutamate-driven excito-

toxicity [14]. Furthermore, synaptic depolarization from

excitatory post-synaptic potentials (EPSPs) and somatic

depolarization from action potentials differentially regu-

late the binding partners and binding sites of the activity-

regulated transcription factor, NPAS4 [33��] (Figure 2e).

This differential binding suggests that EPSPs and action

potentials may also regulate different ARG programs.

Mechanisms of stimulation–transcription
coupling
The neuron implements stimulation–transcription cou-

pling by transforming each stimulus into a transcriptional

output through multiple layers of regulation, including

calcium channels, cell-signaling pathways, transcription

factors, and chromatin state (Figure 2). For example, brief

stimulation is coupled to induction of rapid genes through

the MAPK/ERK pathway, which is required for rapid

gene induction [10��].

First, the stimulus determines the location of elevated

calcium within the neuron [34–39,40�] and its temporal

pattern of influx [40�,41,42], which can influence tran-

scription [15��,43]. Activating stimuli, such as membrane

depolarization or synaptic glutamate, drive gene induc-

tion via calcium influx through L-type calcium channels

or NMDA receptors [29]. The temporal pattern of this

calcium influx reflects the temporal pattern of spiking or

glutamate stimulation [40�,41,42]. The spatial pattern of

calcium influx is also dependent both on the temporal

pattern of glutamate stimulation as well as on the spatial

pattern of membrane depolarization [33��,40�]. For exam-

ple, synaptic EPSPs drive gene induction through

NMDA receptors, whereas somatic action potentials

drive gene expression through L-type calcium channels

[33��]. Unlike activating stimuli, neuronal silencing

through sodium channel blockade appears to drive gene

induction through T-type calcium channels rather than

L-type calcium channels or NMDA receptors [15��].
Finally, stimulation of metabotropic receptors results in

release of calcium from intracellular stores rather than an

influx of extracellular calcium [37]. Compared to
www.sciencedirect.com
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extracellular calcium influx through channels, calcium

from intracellular stores spreads further throughout the

neuron [36,37]. The extent of calcium spread is important

for gene induction, as some genes and transcription

factors, like CREB, require elevated nuclear calcium

for their induction [43,44]. Thus, in the first step of

stimulation–transcription coupling, stimuli are translated

into a temporal and spatial pattern of calcium within the

neuron.

Next, temporal and spatial patterns of calcium determine

signaling pathway activation. First, the temporal

pattern of stimulation, together with that of the resulting

calcium influx, influences the extent of phosphorylation

of ERK, CaMKII, and AKT; the extent of activation

of calcineurin; and the nuclear levels of NFATc3

[10��,40�,41,42,45]. Rather than influencing the extent

of pathway activation, the source and cellular location

of calcium affects which signaling pathways are activated.

Calcium influx through NMDA receptors and L-type

channels activates signaling pathways that reside near

the channel, such as MAPK/ERK and CaMKII [46–50],

whereas calcium released from intracellular stores acti-

vates not only MAPK/ERK but also PKC [37,51]. Fur-

thermore, calcium influx into as few as three dendritic

spines activates nuclear transport of synapse-residing

signaling molecules and transcription factors, including

ERK, Jacob, CRTC1, CREB2, NPAS4, and NFkB
[33��,52–56], whereas other signaling molecules, such

as CaMKIV, reside in the nucleus [46] and are therefore

less likely to be activated by synaptic signals. Thus,

spatial and temporal calcium patterns throughout the cell

determine which signaling molecules reach the nucleus

and their degree of activation upon arrival.

Once in the nucleus, different signaling pathways activate

different transcription factors [29], and different tran-

scription factors regulate different subsets of ARGs

[57–60]. For example, MAPK/ERK signaling activates

SRF [29], which binds specifically to the promoters

and enhancers of the rapid genes induced by brief activity

[10��], whereas MEF2 is activated by calcineurin and

binds to the promoters and enhancers of a subset of genes

that includes both rapid and delayed genes [10��,29].
Thus, some rapid genes are regulated by both SRF

and MEF2. Such combinatorial regulation, where each

gene is regulated by multiple transcription factors, allows

a given gene to be transcribed in response to multiple

types of stimuli. Indeed, the ARG Fos is regulated by five

different enhancers that each bind different transcription

factors and respond to different types of stimulation,

including membrane depolarization, BDNF, and forsko-

lin [61�]. Globally, different activity-regulated enhancers

bind different combinations of transcription factors

[62,63] and are activated to different extents in response

to different durations of membrane depolarization [10��].
These global findings suggest that enhancers establish
www.sciencedirect.com 
stimulation–transcription coupling by specifying which

stimuli regulate each ARG.

In a final layer of coupling regulation, transcription factor

binding to promoters and enhancers is often dependent

on chromatin state, which differs between ARG modules

before stimulation and also changes with stimulation

[26,58,64–70]. The rapid genes induced by brief mem-

brane depolarization have a relatively active, open chro-

matin state in unstimulated neurons [10��,71]. As chro-

matin remodeling takes time, these rapid genes may be

primed by this open chromatin state to respond quickly to

brief stimulation. In contrast, delayed genes have a rela-

tively closed chromatin state in unstimulated neurons

[10��], and their induction requires histone turnover

[72�] as well as the bromodomain protein Brd4 [73], which

recognizes histone acetylation. Stimulus-dependent chro-

matin remodeling of these delayed genes is mediated by

the AP1 transcription factor complex [74�]. Thus, whether

a stimulus can initiate chromatin remodeling may deter-

mine which kinetically defined gene classes it can induce.

Using stimulation–transcription coupling to
infer past stimulation
The existence of a stimulation–transcription coupling

map suggests that neurons encode information about

their stimulation history in gene expression, that is, the

set of mRNAs in the cell at any given time. Indeed, the

duration of stimulation, as well as the type of psychotropic

drug added to cultured neurons, can be inferred from

gene expression a few hours after stimulation, formally

demonstrating such encoding [10��,12,13]. This type of

inference could be a powerful tool when paired with

single cell RNA-seq, allowing assessment of the stimula-

tion history of tens of thousands of neurons in a single

experiment [10��].

In addition to inferring the stimulation history of indi-

vidual neurons, the coupling map could also be used to

infer the past experience of an animal. An experience

leaves a unique ARG signature in the brain that encom-

passes both where in the brain ARGs are expressed [75]

and which ARGs are induced [76��,77–79]. A recent study

used this ARG signature to infer past experiences that

included cocaine exposure and foot shock [76��]. They

found that using both components of the ARG signature

(which genes are induced and where) allowed better

inference than using just one component. Once we better

understand which ARG modules are important for which

plasticities, these ARG signatures could help reveal

where in the brain different forms of experience-depen-

dent plasticity occur.

Conclusions
Genomic experiments have dramatically improved our

ability to create a map of stimulation–transcription cou-

pling. In vitro experiments that systematically vary a
Current Opinion in Neurobiology 2019, 59:87–94
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stimulus along a single dimension of stimulation space

have been, and will continue to be, helpful for describing

these coupling principles. However, in vivo, a single

stimulus can vary along multiple dimensions of stimula-

tion space, and a neuron can receive multiple different

stimuli at one time. Thus, going forward, it will be

important to determine how different dimensions of

stimulation interact in their coupling to transcription.

While testing all of stimulation space would be prohibi-

tively laborious, we could instead focus on achieving a full

coupling map for a single neuronal subtype, thus limiting

the relevant stimulation space to only the stimuli experi-

enced by that subtype in vivo. With such a map in hand, it

may eventually be feasible to manipulate the coupling

map, that is to change the genes induced by a given

stimulation through manipulation of gene-module-spe-

cific regulation. Such a manipulation has the potential to

link gene modules to physiologically relevant plasticities

and to reveal new transcription-dependent mechanisms

of neuronal plasticity.
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Lerche H, Maljevic S, Knöll B: SRF modulates seizure
occurrence, activity induced gene transcription and
hippocampal circuit reorganization in the mouse pilocarpine
epilepsy model. Mol Brain 2017, 10:1-30 http://dx.doi.org/
10.1186/s13041-017-0310-2.

60. Kuzniewska B, Nader K, Dabrowski M, Kaczmarek L, Kalita K:
Adult deletion of SRF increases epileptogenesis and
decreases activity-induced gene expression. Mol Neurobiol
2016, 53:1478-1493.

61.
�

Joo J-Y, Schaukowitch K, Farbiak L, Kilaru G, Kim T-K: Stimulus-
specific combinatorial functionality of neuronal c-fos
enhancers. Nat Neurosci 2015, 19:75-83.

This study demonstrates that Fos’s five different enhancers each respond
to different stimuli and bind different transcription factors.

62. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J,
Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S et al.:
Widespread transcription at neuronal-activity-regulated
enhancers. Nature 2010, 465:182-187.

63. Telese F, Ma Q, Perez PM, Notani D, Oh S, Li W, Comoletti D,
Ohgi KA, Taylor H, Rosenfeld MG: LRP8-reelin-regulated
neuronal enhancer signature underlying learning and memory
formation. Neuron 2015, 86:696-710.

64. Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL:
Acetyl-CoA synthetase regulates histone acetylation and
hippocampal memory. Nature 2017, 546:381-386.

65. Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J,
Rueda R, Phan TX, Yamakawa H, Pao PC et al.: Activity-induced
DNA breaks govern the expression of neuronal early-response
genes. Cell 2015, 161:1592-1605.

66. Scandaglia M, Lopez-Atalaya JP, Medrano-Fernandez A, Lopez-
Cascales MT, del Blanco B, Lipinski M, Benito E, Olivares R,
Iwase S, Shi Y et al.: Loss of Kdm5c causes spurious
transcription and prevents the fine-tuning of activity-
regulated enhancers in neurons. Cell Rep 2017, 21:47-59.

67. Mao W, Salzberg AC, Uchigashima M, Hasegawa Y, Hock H,
Watanabe M, Akbarian S, Kawasawa YI, Futai K: Activity-induced
regulation of synaptic strength through the chromatin reader
L3mbtl1. Cell Rep 2018, 23:3209-3222.

68. Benevento M, Iacono G, Selten M, Ba W, Oudakker A, Frega M,
Keller J, Mancini R, Lewerissa E, Kleefstra T et al.: Histone
methylation by the kleefstra syndrome protein EHMT1
mediates homeostatic synaptic scaling. Neuron 2016, 91:341-
355.

69. Halder R, Hennion M, Vidal R, Shomroni O, Rahman R-U, Rajput A,
Pena Centeno T, van Bebber F, Capece V, Garcia Vizcaino JC
et al.: DNA methylation changes in plasticity genes accompany
the formation and maintenance of memory. Nat Neurosci 2015,
19:102-110.
Current Opinion in Neurobiology 2019, 59:87–94 
70. Chen LF, Lin YT, Gallegos DA, Hazlett MF, Gómez-Schiavon M,
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